

Cell Structure

- All cells contain
- plasma membrane
- outer covering that separates the cell's interior from its surrounding environment
- cytoplasm
- jelly-like region within the cell in which other cellular components are found
- DNA
- the genetic material of the cell
- ribosomes
- particles that synthesize proteins

Type of Cells

- Prokaryotic Cell
- simple, single-celled (unicellular) organism that lacks a nucleus, or any other membranebound organelle
- bacteria, archaea

- Eukaryotic Cell

- has a membrane-bound nucleus and other membrane-bound compartments or sacs, called organelles, which have specialized functions
- fungi, plants, animals

Prokaryotic and Eukaryotic Cells - CK-12: Biology Concepts, LibreTexts (CC BY-NC 4.0) https://chem.libretexts.org/@go/page/6439

Genomic DNA

- A cell's complete complement of DNA is called its genome.
- In prokaryotes the genome is composed of a single, double-stranded DNA molecule in the form of a loop or circle.
- In eukaryotes, the genome comprises several double-stranded, linear DNA molecules bound with proteins to form complexes called chromosomes.
- Each species of eukaryote has a characteristic number of chromosomes in the nuclei of its cells.
- Human body cells (somatic cells) have 46 chromosomes
- two matched sets of 23 chromosomes (diploid)
- the matched set is called a homologous pair or homologous chromosomes
- Human sex cells (gametes or germ cells) have 23 chromosomes
- one set of 23 chromosomes (haploid)

The Cell Cycle

- The cell cycle is an ordered series of events involving cell growth and cell division that produces two new daughter cells.
- Cells on the path to cell division proceed through a series of precisely timed and carefully regulated stages of growth, DNA replication, and division that produce two genetically identical cells.
- The cell cycle has two major phases: interphase and the mitotic phase
- Interphase
- the cell grows and DNA is replicated
- Mitotic phase
- the replicated DNA and cytoplasmic contents are separated and the cell divides

Mitosis

- Mitosis is divided into a series of phases
- interphase
- prophase
- metaphase
- anaphase
- Telophase
- cytokinesis

- The result is two identical cells

Interphase

- The cell grows, performs routine life processes, and prepares to divide.

Prophase

- Chromosomes are visible, nuclear membrane breaks down, and spindle fibers begin to form.

Metaphase

- Sister chromatids line up at the center of the cell.

Anaphase

- Sister chromatids are pulled apart and move to opposite poles of the cell.

Telophase

- Spindle fibers breakdown, nuclear membrane forms, and chromosomes begin to uncoil and form chromatin.

Cytokinesis

- Cytoplasm splits into two and the cell divides.

General view of cells in
the growing root-tip of the onion, from a longitudinal section, enlarged 800 diameters.
a. non-dividing cells, with chromatinnetwork and deeply stained nucleoli
b. nuclei preparing for division (spiremestage)
c. dividing cells showing mitotic figures
e. pair of daughtercells shortly after division

Wilson, Edmund B. (1900) The cell in Development and Inheritance (2nd ed.), New York: The Macmillan Company.
This work is in the public domain in its country of origin and other countries and areas where the copyright term is the author's life plus 70 years or fewer.

Binary Fission

- Occurs in prokaryotic cells
- Simpler and faster due to a single, circular DNA chromosome and no nucleus

Binary fission 2 - Ecoddington14 (CC BY-SA 3.0)
Binary fission animation - ZabMilenko (CC BY-SA 3.0

- Straightening Out the DNA
- The circular strand uncoils and straightens so it can be copied.
- DNA Replication
- The DNA duplicates and the two copies attach themselves to the cell membrane.
- Cell Elongation
- Cell lengthens by adding cell wall and membrane material around the middle
- Cell Splitting
- The cell splits into two daughter cells of equal size

Sexual Reproduction

- Although many unicellular organisms and a few multicellular organisms can produce genetically identical clones of themselves through asexual reproduction, many single-celled organisms and most multicellular organisms reproduce regularly using another method-sexual reproduction.
- Sexual reproduction involves two parents
- Parents produce reproductive cells (gametes or germ cells) that unite (fertilization) to form an offspring
- Gametes are haploid cells
- Contain half the number of chromosomes found in other cells of the organism
- Gametes are produced by a type of cell division called meiosis

Meiosis

- A type of cell division in which the number of chromosomes is reduced by half
- Specific to gamete producing cells in the gonads
- Begins with a diploid cell and ends with four haploid cells
- These cells eventually differentiate into mature sperm or egg cells
- During meiosis, homologous chromosomes separate, and haploid cells form that have only one chromosome from each pair

- Two cell divisions occur during meiosis, meiosis I and meiosis II.

Fabian L, Troscianczuk J, Forer A (2007). "Calyculin A, an enhancer of myosin, speeds up anaphase chromosome movement". Cell \& Chromosome. DOI: 10.1186/1475-9268-6-1. PMID 17381845. PMC: 1847834. (CC BY 2.0)

Meiosis I

- During prophase I, the maternal and paternal genes are recombined by crossover events occurring on each homologous pair

- During metaphase I, homologous chromosomes are randomly arranged in the center of the cell
- produces a unique combination of maternal and paternal chromosomes that will make their way into the gametes
- for humans there are $2^{23}=8388608$ different possible combinations

Meiosis II

- The connected sister chromatids in the haploid cells from meiosis I will be split to form four haploid cells
- The two cells produced in meiosis I go through the events of meiosis II at the same time

7.2 Meiosis. Concepts of Biology. OpenStax, Rice University. https://openstax.org/books/concepts-biology/pages/7-2-meiosis (CC BY 4.0)

Mitosis

- one nuclear division that results in two new cells
- nuclei are genetically identical to the original
- nuclei contain the same number of sets of chromosomes as the original
- two nuclear divisions that result in four new cells
- nuclei are never genetically identical to the original
- nuclei contain one chromosome set only (half the number of the original cell)

